
Bump Mapping Unparametrized Surfaces on the GPU

Morten S. Mikkelsen
Naughty Dog Inc., USA

May 24, 2010

Abstract

Original bump mapping is only defined for surfaces
with a known surface parametrization. In this paper
a new method, for the GPU, is proposed which does
not use such a given parametrization. To compute
the perturbed normal the only inputs used are the
surface position, the height value and the original
normal.

The method decouples bump mapping from the
primitive type which allows for a higher degree of
proceduralism in both generation of the height value
and the surface.

1 Introduction

In 1978, James Blinn published his paper [Bli78] on
simulation of wrinkled surfaces. The aim of his pa-
per was to mimic the high frequency surface irregu-
larities that we see in reality on objects everywhere.
Today the effect is known as bump mapping and is
widely used in the computer graphics industry. In
real–time computer graphics a variant known as tan-
gent space normal mapping is used. This is the same
effect but with height derivatives precomputed. For
a proof the reader is referred to [Mik08].

The effect is defined based on the premise that
a surface parametrization is known. For a trian-
gular mesh this is defined by texture coordinates
which represent some unwrap of the surface onto a
plane. The normal perturbation expression contains
the first order derivatives of the surface parametriza-
tion. For triangular meshes these are precomputed
at vertex level and stored in memory which adds to

the footprint. Furthermore, when deformation of the
surface is applied the first order derivatives must be
reevaluated every frame. For a deformation which
is not based on linear transformations the reevalua-
tion requires a fully deformed version of the surface
in memory which means deformation cannot be done
in a vertex shader. These problems were solved in
[Sch06] by computing first order derivatives in the
fragment shader. However, this solution still uses
normal maps and requires 2D texture coordinates.

A height map represents a single value per texel
and thus has the potential to compress better than
the equivalent normal map. A normal map may be
thought of as height derivative map which requires
two values. Furthermore, additional effects such as
parallax/relief texture mapping [KTI∗01], [OBM00]
use a height map.

The requirement that 2D texture coordinates exist
means the method does not apply to certain forms
of proceduralism. For instance, rendering in the
film industry has enjoyed the ability to distribute
heights across a surface from compositions of scalar
functions/textures defined on domains of arbitrary
dimension since the introduction of the Reyes ar-
chitecture [CCC87]. Until now this ability has not
been available on the GPU. We present an efficient
method, for the GPU, which overcomes these lim-
itations and does not rely on any predetermined
parametrization.

2 The Formulation of Bump Mapping

Let S ⊂ R3 represent some manifold surface and let
β represent the height function such that a scalar

1

value is associated with each point on S. In Jim
Blinn’s formulation the surface S has a known sur-
face parametrization and we denote this σ : (s, t)→
S where (s, t) ∈ R2. Furthermore, the height map
is assumed to be a function of the same parameter
β : (s, t)→ R. Given the unit length surface normal
~n the displaced surface is defined as

τ = σ + β · ~n

The surface normal of τ represents the perturbed
normal ~n′ used in bump mapping. To simplify the
evaluation Blinn uses approximations for the first
order derivatives in which the last term is neglected.

τs ' σs + βs · ~n
τt ' σt + βt · ~n

Note that the normal ~n represents the visible side
of the initial surface S. It is not taken into account
in [Bli78] that the parametrization defined by σ is
not necessarily orientation preserving. A derivation,
of the perturbed normal ~n′, which takes this into
account is given in [Mik08] and the unnormalized
result is

N =

 σs σt ~n

~n′ = (N−1)T ·

 −βs−βt
1

= ~n+

(~n× σt)βs + (σs × ~n)βt
~n • (σs × σt)

(1)

where the symbol • denotes the dot product. Fur-
thermore, the denominator in the second term of
equation (1) is equal to

det(N) = ~n • (σs × σt)
= ±‖σs × σt‖

and is positive when the parametrization is orienta-
tion preserving. The formulation given here is al-
most identical to that of Jim Blinn except that it is
not an assumption here that det(N) is positive.

In the following section we will give a formulation
of bump mapping which does not require a user–
defined parametrization of S or β.

3 The Surface Gradient Based Formulation

The height function β represents a scalar field on the
surface S. In vector calculus, the gradient of a scalar
field is a vector field which points in the direction of
the greatest rate of increase of the scalar field, and
whose magnitude is the greatest rate of change.

The surface gradient∇S of a scalar field is tangent
to S. For any point p, on S, if there exists some local
extension of β which is a smooth function on some
open subset of R3, containing p, then the surface
gradient at p is equal to

∇Sβ = ∇β − ~n · (~n • ∇β) (2)

which is the projection of the regular gradient onto
the tangent plane. For a known chart σ, containing
p, the surface gradient is equal to

∇Sβ =
[
βs βt 0

]
·N−1

=
(σt × ~n)βs + (~n× σs)βt

~n • (σs × σt)
(3)

The surface gradient ∇Sβ has the two properties
that it is a vector in the tangent plane and that the
dot product between it and some given unit length
tangent vector ~v gives the rate of change in the di-
rection of ~v. Equation (3) clearly obeys the former
and the latter is true since ∇Sβ • ~v = a · βs + b · βt
for ~v = aσs + bσt where a, b ∈ R.

From equations (1) and (3) it follows that the per-
turbed normal can be expressed as

~n′ = ~n−∇Sβ (4)

Intuitively this means the normal is pulled away
from the tangent direction of the greatest rate of
increase in β. Interestingly the result is identical
to Blinn’s perturbed normal, for a known surface
parametrization, as indicated by equation (3).

The form given by equation (4) indicates that
the perturbed normal does not depend on a specific
parametrization. It depends on the shape of the sur-
face and the distribution of height values. Thus we
can evaluate the surface gradient ∇Sβ using some,
per pixel chosen, local parametrization. For our so-
lution we choose inverse projection from the screen

2

domain M ⊂ R2 to the surface S. Inverse projec-
tion does not represent a valid chart for the entire
surface since a coordinate (s0, t0) ∈ M can map to
multiple points on S. However, the map represents
a valid local parametrization σ at each intersection
point. In other words the intersection point is con-
tained in some small neighborhood on S which does
not overlap itself if projected onto the screen. It is
then a local diffeomorphism. For further details the
reader is referred to the definition of a manifold and
also the inverse function theorem [Pre01].

In the next section we will discuss how this math,
equation (3) in particular, translates to a shader for
the GPU.

4 The Implementation

A surface is a two dimensional manifold which means
on a small scale a neighborhood, containing p ∈ S,
can be perceived as planar. In a sense we inherit
the differential structure associated with R2. On
the GPU a surface is rendered as some, arbitrarily
dense, triangular representation which complements
this concept. A triangle does not overlap itself after
projection unless the projection is a line segment or
a point in which case it is rejected by the GPU. Thus
inverse projection from the screen to the triangle is a
valid parametrization. We denote this σ : (s, t)→ p
where the coordinate of the pixel center is (s, t) and
the corresponding point on the triangle is p. This
function is resolved simply by passing the vertex po-
sition to the interpolator.

To compute the surface gradient by equation (3)
we must produce the derivatives σs, σt, βs and
βt. The screen–space derivative calculation func-
tions provided by the GPU are known as ddx_fine

and ddy_fine. On the current generation these pro-
duce the same result for pixel pairs in blocks of
2 × 1 and 1 × 2 respectively. Better results would
be achieved by using central differencing but in or-
der to keep the solution simple and effective we rely
on the built–in calculation. The implementation is
shown in listing 1. For those primarily seeking to use
this technique with traditional bump maps a better
quality is achieved by replacing the height derivative

float3 PerturbNormal(float3 surf_pos ,

float3 surf_norm , float height)

{

float3 vSigmaS = ddx(surf_pos);

float3 vSigmaT = ddy(surf_pos);

float3 vN = surf_norm; // normalized

float3 vR1 = cross(vSigmaT ,vN);

float3 vR2 = cross(vN,vSigmaS);

float fDet = dot(vSigmaS , vR1);

float dBs = ddx_fine(height);

float dBt = ddy_fine(height);

float3 vSurfGrad =

sign(fDet) * (dBs * vR1 + dBt * vR2);

return normalize(abs(fDet)*vN -vSurfGrad);

}

Listing 1: Perturbed normal calculation without the
use of texture coordinates.

float2 TexDx = ddx(In.texST);

float2 TexDy = ddy(In.texST);

float2 STll = In.texST;

float2 STlr = In.texST + TexDx;

float2 STul = In.texST + TexDy;

float Hll = bmap.Sample(sampler , STll).x;

float Hlr = bmap.Sample(sampler , STlr).x;

float Hul = bmap.Sample(sampler , STul).x;

float dBs = Hlr -Hll;

float dBt = Hul -Hll;

Listing 2: Screen–space height derivative evaluation
by forward differencing.

evaluation in listing 1 with, for instance, forward dif-
ferencing as is done in listing 2. Three independent
taps are used to achieve this and cache coherence is
not an issue given the locality of these taps. Simi-
larly, central differencing may be achieved using four
taps. It is also worth noting that the derivative op-
erator is linear so it is possible to use manual dif-
ferencing for texture maps and not for procedural
functions but still perturb the normal only once.

A triangular mesh is piecewise flat. However, it is
common in computer graphics to use averaged nor-
mals at the vertices which are, subsequently, inter-

3

(a) flat (b) smooth

Figure 1: In figure 1(a) we see hard edges as a result
of using τs × τt to produce the normal. Using the
method in listing 1 perturbs the interpolated vertex
normal as shown in figure 1(b).

polated across the triangle to produce a look which
is more soft. We use the same normalized interpo-
lation of the vertex normals as the input parameter
surf_norm. If the vertex normals are not known
then the normal of the triangle can be obtained us-
ing cross(vSigmaS, vSigmaT) instead.

For completeness we point out that there exists an
even simpler approach to perturb the normal. This
is the cross product between the first order deriva-
tives of the displaced surface position τs × τt. How-
ever, this will perturb the face normal and not the
interpolated vertex normal. A comparison between
this approach and our solution is shown in figure 1.

The method which we have discussed until now
relies on the availability of the shader functions
ddx_fine and ddy_fine. This issue will be dis-
cussed in the next section.

5 Pre and Post–Process Bump Mapping

The shader function given by listing 1 can only be
used in a pixel shader during the in–process fixed
function rasterization of triangles. This excludes
bump mapping in a pre–process such as a vertex
shader or any post–processing solution such as de-
ferred rendering. Though the method in listing 1

supports spatial height maps we can, for such a map,
achieve the same normal perturbation without it.

float3 PerturbNormal(float3 surf_norm ,

float3 vGrad)

{

float3 vSurfGrad =

vGrad - surf_norm*dot(surf_norm , vGrad);

return normalize(surf_norm - vSurfGrad);

}

Listing 3: This is the surface gradient based normal
perturbation using a spatial height map.

It was proposed by Perlin [Per85] that a normal
perturbing effect can be achieved by adding the gra-
dient, of a spatial texture, to the unit normal ~n.
However, this does not produce the normal associ-
ated with the displaced surface. In this paper we
have proved that Jim Blinn’s formulation of the per-
turbed normal is equivalent to equation (4). Our
implementation is shown in listing 3. The function
takes as input the gradient of the spatial texture∇β.
For some functions the gradient can be determined
analytically which is the case for Perlin noise. When
this is not the case then numerical approximation is

(a) Perlin’s perturbation
method

(b) Surface gradient based

Figure 2: The result of Perlin based normal per-
turbation is shown in figure 2(a). There are visual
artifacts which are gone using our method shown in
figure 2(b).

4

(a) method in listing 1 (b) method in listing 3 (c) image cut out 1 (d) image cut out 3

Figure 3: Figures 3(a) and 3(b) confirm that the same results are produced by the surface gradient method
and listing 1 which is our ddx fine and ddy fine based implementation. However, looking closer at the
images as shown in figures 3(c) and 3(d) shows that the quality of derivative calculation using the function
in listing 1 depends on pixel density.

also a possibility. For instance forward differencing
is used by Perlin in [Per04].

The difference between Perlin’s perturbation
method and equation (4) is visually significant. If
the gradient is above the tangent plane the perturba-
tion impact is reduced and results are understated.
If the gradient is below the tangent plane the per-
turbation impact is increased. This increase even-
tually results in the perturbed normal pointing in-
ward. A visual is shown in figure 2(a) based on a
low frequency Perlin noise for the height map. The
negated gradient was used to produce this picture
since adding it effectively inverts the height map.
Using the function in listing 3 gives the artifact free
result shown in figure 2(b).

6 Results

The results presented in this section were produced
using an implementation in Direct3D 11 using the
hlsl shading language. Our first scene is a triangu-
lated isosurface with a single point light. We as-
sign a height to each surface point using the spa-
tial function turbulence() by Ken Perlin [Per85].

Six octaves are used and the Perlin noise function
is done with the implementation by Simon Green
in [Gre05]. Note that the gradient of Perlin noise
has an analytical solution dnoise() which can eas-
ily be implemented in a shader. This implies that
the resulting perturbed normal has an analytical so-
lution using equations (2) and (4). However, the
function turbulence() accumulates numerical val-
ues of noise so we use central differencing to approx-
imate the gradient. The result is shown in figure
3(b) and the corresponding result in figure 3(a) us-
ing the function in listing 1. The results are the same
which confirms the analysis in section 3. However,
at closer inspection there are differences in terms of
quality since the derivative calculation using listing 1
depends on the pixel density across the surface rela-
tive to the frequency level of the height function. As
an example a small part of the sphere in figures 3(a)–
3(b) is shown in figures 3(c)–3(d) respectively. Note
that these correspond to zooming in on the images.
In contrast approaching the sphere increases pixel
density and gives similar results using these meth-
ods. Increasing the resolution or super–sampling will
also achieve this.

5

The following test compares results between us-
ing the function in listing 1 and normal mapping
using interpolation of per vertex tangent spaces.
The model used is a treasure item from the game
“Uncharted 2: Among Thieves”. Again results are
the same as shown in figures 4(a) and 4(b). How-
ever, there is a difference since derivatives are com-
puted in screen–space from a reconstruction of the
height function. This reconstruction is done using
the built–in texture sampler which produces a sig-
nal of relatively low accuracy. For instance when the
texture map is magnified due to undersampling the
reconstruction of heights is reduced to a piecewise
linear function. The derivative function of such a
signal is a piecewise constant function. The result is
illustrated as a close up of the model in figure 4(e).

A possible solution is of course to use higher or-
der filtering but this makes the solution significantly
more expensive. We propose either accepting the
limitation of the method or hiding the problem us-
ing a well known solution which is detail maps. Fig-
ure 4(f) shows the result of using turbulence() for
detail.

7 Conclusion

In this paper we have shown how bump mapping
can be done on the GPU using the following inputs
only in the perturbation function: surface position,
surface normal and the height value.

The solution works without precomputed tangent
vectors and in fact does not even require that the
height value is produced from a texture coordinate.
The height function can be either spatial or defined
on the 2D domain. It can be analytical/procedural
or represented by a texture map. Thus our method
presents a uniform solution to determine the per-
turbed normal.

A limitation exists due to our use of the
screen–space derivative instructions ddx_fine and
ddy_fine. These are only available when using the
built–in rasterization pipeline of the GPU which is
restricted to triangles. This excludes certain use
cases such as perturbation of the normal during a
deferred process. However, in this paper we have

shown that Jim Blinn’s formulation of the perturbed
normal is equivalent to subtracting the surface gra-
dient of the height function from the unit normal.
Thus if the height function is spatial, such as Perlin
noise, the normal can be perturbed without the use
of ddx_fine and ddy_fine. This is particularly ef-
ficient in the case of Perlin noise because it has an
analytical gradient function. When this is not the
case the gradient can be approximated numerically.

The primary limitation is that bump mapping in
the general case is only supported during in–process
rendering of triangles. For future work it would be
interesting to see if we can achieve support for two
dimensional height maps in the vertex shader and/or
achieve a uniform solution in post process.

Acknowledgments. This author would like to

thank Bryan Mcnett for helpful discussions, Manchor

Ko, Pal–Kristian Engstad, and Swaminathan Narayanan

for constructive comments and proof reading. Finally,

thank you to Naughty Dog for allowing me to use the

treasure object for this paper.

References

[Bli78] Blinn J.: Simulation of wrinkled surfaces. In
ACM Computer Graphics (SIGGRAPH ’78)
(1978), pp. 286–292.

[CCC87] Cook R. L., Carpenter L., Catmull E.:
The reyes image rendering architecture. In
ACM Computer Graphics (SIGGRAPH ’87)
(1987), ACM, pp. 95–102.

[Gre05] Green S.: GPU Gems 2 – Pro-
gramming Techniques for High–Performance
Graphics and General–Purpose Computa-
tion”. Addison–Wesley Publishing, 2005,
ch. 26, pp. 409–416.

[KTI∗01] Kaneko T., Takahei T., Inami M.,
Kawakami N., Yanagida Y., Maeda T.,
Tachi S.: Detailed shape representation with
parallax mapping. In Proceedings of the ICAT
2001 (2001), pp. 205–208.

[Mik08] Mikkelsen M. S.: Simulation of Wrinkled
Surfaces Revisited. Master’s thesis, Depart-
ment of Computer Science at the University
of Copenhagen, 2008.

6

(a) method in listing 1 (b) normal mapping

(c) no perturbation (d) method in listing 1 with albedo

(e) undersampling (f) undersampling with detail

Figure 4: Our listing 1 method gives results which are very similar to that of normal
mapping as shown in figures 4(a)-4(b). The model is shown without perturbation of
normals, in figure 4(c), to illustrate which elements of the detail are in the height map.
The final result is shown in figure 4(d) with the albedo map applied. When the height
texture map is magnified the surface becomes piecewise flat as shown in figure 4(e).
The shortcoming can be hidden by using a detail map which is shown in figure 4(f).

7

[OBM00] Oliveira M. M., Bishop G., McAllis-
ter D.: Relief texture mapping. In ACM
Computer Graphics (SIGGRAPH ’00) (2000),
Addison–Wesley Publishing, pp. 359–368.

[Per85] Perlin K.: An image synthesizer. SIG-
GRAPH Comput. Graph. 19, 3 (1985), 287–
296.

[Per04] Perlin K.: GPU Gems – Programming Tech-
niques, Tips and Tricks for Real-Time Graph-
ics. Addison–Wesley Publishing, 2004, ch. 5,
pp. 409–416.

[Pre01] Pressley A.: Elementary Differential Geom-
etry. Springer, 2001.

[Sch06] Schuler C.: Normal mapping with-
out precomputed tangents. In ShaderX5:
Advanced Rendering Techniques, Engel W.,
(Ed.). Charles River Media, 2006, pp. 131–
140.

8

