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Abstract

This paper introduces a shading model for light diffusion in multi-
layered translucent materials. Previous work on diffusion in
translucent materials has assumed smooth semi-infinite homoge-
neous materials and solved for the scattering of light using a dipole
diffusion approximation. This approximation breaks down in the
case of thin translucent slabs and multi-layered materials. We
present a new efficient technique based on multiple dipoles to ac-
count for diffusion in thin slabs. We enhance this multipole the-
ory to account for mismatching indices of refraction at the top and
bottom of of translucent slabs, and to model the effects of rough
surfaces. To model multiple layers, we extend this single slab the-
ory by convolving the diffusion profiles of the individual slabs. We
account for multiple scattering between slabs by using a variant of
Kubelka-Munk theory in frequency space. Our results demonstrate
diffusion of light in thin slabs and multi-layered materials such as
paint, paper, and human skin.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: Subsurface scattering, BSSRDF, reflection models,
layered materials, diffusion theory, light transport, global illumina-
tion, realistic image synthesis

1 Introduction
Translucent materials are common in the natural world and simu-
lating the appearance of these materials is important for realistic
image synthesis. These materials come in many forms; some are
homogeneous such as snow and candle wax, or may have complex
internal properties such as marble and grapes, while others are com-
posed of multiple layers such as skin and plant leaves.

Blinn [1982] was the first to simulate subsurface scattering in
computer graphics in the context of dusty surfaces. Haase and
Meyer [1992] used Kubelka-Munk theory to simulate scattering in
paints, and Hanrahan and Krueger [1993] presented a more accurate
model of single scattering in layered materials. Stam [2001] ex-
amined the total subsurface reflectance and transmittance of a slab
bounded by rough surfaces. All of these models, however, assume
that light scatters at a single point on the surface, and the resulting
subsurface scattering is either diffuse or shaped by the scattering
properties of the material.

A more complete simulation of subsurface scattering has been done
using photon mapping [Dorsey et al. 1999], path tracing [Jensen
et al. 1999], and scattering equations [Pharr and Hanrahan 2000].
Other Monte Carlo methods using spectral and physically based
parameters [Krishnaswamy and Baronoski 2004] have also been
proposed. These approaches are general and capable of simulat-
ing properties of translucent materials, but they are computationally

costly in highly scattering materials, where light diffusion domi-
nates.

To efficiently simulate subsurface scattering in translucent mate-
rials, Jensen et al. [2001] used an analytic expression based on
the dipole diffusion approximation, which assumes that the mate-
rial is homogeneous and semi-infinitely thick. Although the dipole
method has been modified for fast [Jensen and Buhler 2002] and in-
teractive rendering [Mertens et al. 2003], the underlying theory has
remained unchanged. Chen et al. [2004] have coupled image-based
texture functions with the dipole diffusion model and photon map-
ping to volumetrically render thin shells covering a thick substrate,
effectively obtaining a more general method for light scattering in
translucent materials. The precomputation time for their method is
high, however, as it relies on photon tracing.

In this paper, we extend previous work on light diffusion in translu-
cent materials. We present a multipole diffusion approximation for
light scattering in thin slabs that uses an extension to diffusion the-
ory based on the method of images. We extend this multipole theory
to account for both surface roughness and layers with varying in-
dices of refraction, and we combine it with a novel frequency space
application of Kubelka-Munk theory in order to simulate light dif-
fusion in multi-layered translucent materials. Our method general-
izes to an arbitrary number of layers, and it enables the composition
of arbitrary multi-layered materials with different optical parame-
ters for each layer. It is both accurate and efficient and easily inte-
grated into existing implementations based on the dipole diffusion
approximation.

2 Light Diffusion
The scattering of light in translucent materials is described by the
Bidirectional Scattering Surface Reflectance Distribution Function
(BSSRDF) [Nicodemus et al. 1977]

S(xi, ~ωi,xo, ~ωo) =
dL(xo, ~ωo)
dΦ(xi, ~ωi)

. (1)

Here L is the outgoing radiance, Φ the incident flux, xi and ~ωi the
incident position and direction, and xo and ~ωo the exitant position
and direction. In the case of highly scattering, homogeneous, and
semi-infinite materials, Jensen et al. [2001] have shown that the
BSSRDF can be approximated using diffusion theory, which ac-
counts for most of the scattered light in natural materials [Jensen
and Buhler 2002]

Sd(xi, ~ωi;xo, ~ωo) =
1
π

Ft(xi, ~ωi)R(||xi − xo||2)Ft(xo, ~ωo). (2)

Ft is the Fresnel transmittance at the entry and exit points xi and xo,
and the diffuse reflectance profile, R, is approximated by a diffusion
dipole

R(r) =
α ′zr(1+σtrdr)e−σtrdr

4πd3
r

− α ′zv(1+σtrdv)e−σtrdv

4πd3
v

, (3)

where σtr =
√

3σaσ ′
t is the effective transport coefficient, σ ′

t =
σa + σ ′

s is the reduced extinction coefficient, α ′ = σ ′
s/σ ′

t is the re-
duced albedo, and σa and σ ′

s are the absorption and reduced scat-
tering coefficients. zr = 1/σ ′

t and zv = (1 + 4A/3)/σ ′
t are the z-

coordinates of the positive and negative sources relative to the sur-
face at z = 0 (see Figure 1a). r = ||xo−xi||2, and dr =

√
r2 + z2

r and



dv =
√

r2 + z2
v are the distances to the sources from a given point

on the surface of the object. D = 1
3σ ′

t
is the diffusion constant and

A is given by Equation (7).

The diffusion dipole is derived using a diffusion approximation of
radiative transport. The diffuse radiance is approximated using a
truncated spherical harmonic expansion

Ld(r, ~ω) =
1

4π
φ(r)+

3
4π

E(r) ·~ω, (4)

where φ is the fluence and E is the vector flux. For a full intro-
duction to diffusion theory and the above expression see [Ishimaru
1978]. We focus on the derivation of the dipole model from the
boundary conditions to the diffusion equation. Specifically, at the
surface of a material, any light that escapes is assumed to never re-
turn. Therefore, the total downward diffuse radiance at the surface
into the material (+z direction) is equal to the internally reflected
upward diffuse radiance∫

Ω+
Ld(r, ~ω)(−~n ·~ω) d~ω = Fdr

∫
Ω−

Ld(r, ~ω)(~n ·~ω) d~ω at z = 0, (5)

where Ω+ and Ω− indicate integration over the positive and neg-
ative hemispheres, and ~n is the normal at the material surface (see
Figure 1). Fdr is a diffuse Fresnel term that approximates the in-
ternal diffuse reflectivity of the slab. Substitution of Equation (4)
into (5) and simplifying gives [Ishimaru 1978]

φ(r)−2AD
∂φ(r)

∂ z
= 0 at z = 0, (6)

where D is defined as above. Note that this expression is an ap-
proximate result, but one widely held as accurate for highly scat-
tering materials. For more rigorous conditions, see [Glasstone and
Sesonske 1955]. In Equation (6), A is defined as

A = (1+Fdr)/(1−Fdr), (7)

and represents the change in fluence due to internal reflection at the
surface. The diffuse Fresnel reflectance Fdr can be approximated
by the following polynomial expansions [Egan et al. 1973]

Fdr '


−0.4399+

0.7099
η

− 0.3319
η2 +

0.0636
η3 , η < 1

−1.4399
η2 +

0.7099
η

+0.6681+0.0636η , η > 1
(8)

where η is the ratio of indices of refraction.

An incident beam of light is approximated by a point light source
placed under xi at a depth of one mean free path, ` = 1/σ ′

t [Patter-
son et al. 1989] below the surface of the material. By Equation (6),
a linear extrapolation of the fluence vanishes at zb = 2AD above
the surface [Farrell and Patterson 1992], called the extrapolation
distance. Since the positive source is embedded at `, placing the
negative source (1 + 4A/3)/σ ′

t = 2zb + ` above the surface results
in zero net fluence at −zb. This results in a dipole that is a good
approximation of Equations (5) and (6) (see Figure 1a).

2.1 Light scattering in thin slabs
The dipole approximation was derived for the case of a semi-infinite
medium. It assumes that any light entering the material will either
be absorbed or return to the surface. For thin slabs this assumption
breaks down as light is transmitted through the slab, which reduces
the amount of light diffusing back to the surface. This means that
the dipole will overestimate the reflectance of thin slabs, and it can-
not correctly predict the transmittance.

We can account for light scattering in slabs by taking the changed
boundary condition into account. For a slab of thickness d, we de-
fine a boundary condition for the bottom surface analogous to Equa-
tion (5). Diffuse light transmitted through the slab does not return,
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Figure 1: Dipole configuration for semi-infinite geometry (left), and
the multipole configuration for thin slabs (right).

and the upward diffuse radiance is equal to the reflected downward
radiance at the bottom surface∫

Ω−
Ld(r, ~ω)(~n ·~ω) d~ω = Fdr

∫
Ω+

Ld(r, ~ω)(−~n ·~ω) d~ω at z = d. (9)

Simplifying this equation gives a result similar to Equation (6),

φ(r)+2AD
∂φ(r)

∂ z
= 0 at z = d, (10)

where we make the assumption that the non-scattering mediums
above and below the slab have the same index of refraction. In the
next section we will show how to handle the case where the indices
differ. In this case of matched boundaries, Equation (10) states that
the flux vanishes at depth d + zb, which is zb below the bottom of
the slab.

We can satisfy Equation (10) by mirroring the top dipole about
z = d + zb. The net fluence from both dipoles results in zero flu-
ence at z = d + zb (the lower dotted line in Figure 1b) [Patterson
et al. 1989]. Reinforcing the condition at z = zb (the top dotted
line) requires mirroring the bottom dipole about the top line. Both
boundary conditions are satisfied simultaneously only when there
is an infinite array of dipoles (Figure 1b).

When the ratios of indices of refraction, and thus the extrapolation
distances, are the same at both the top and bottom interfaces, the
z-coordinates of the dipole sources are given by

zr,i = 2i(d +2zb)+ `
zv,i = 2i(d +2zb)− `−2zb , i = −n, . . . ,n, (11)

where 2n + 1 is the number of dipoles, d is the slab thickness, and
zb = 2AD is the extrapolation distance.

The reflectance due to 2n + 1 dipoles is simply the sum of their
individual contributions

R(r) =
n

∑
i=−n

α ′zr,i(1+σtrdr,i)e−σtrdr,i

4πd3
r,i

−
α ′zv,i(1+σtrdv,i)e−σtrdv,i

4πd3
v,i

,

(12)
where dr,i =

√
r2 + z2

r,i and dv,i =
√

r2 + z2
v,i are the distances to

the dipole sources from a given point on the surface of the object.
Note that we get the dipole approximation when n = 0. The diffuse
transmittance can be found by adjusting for the depth of the slab

T (r) =
n

∑
i=−n

α ′(d − zr,i)(1+σtrdr,i)e−σtrdr,i

4πd3
r,i

−

α ′(d − zv,i)(1+σtrdv,i)e−σtrdv,i

4πd3
v,i

. (13)

This multipole approximation is used in the same way as the dipole.



Figure 2: Comparison of the reflectance and transmission profiles of slabs of varying thickness predicted by the dipole and the multipole to
Monte Carlo simulations. The slab thickness increases from 2 mean free paths in the left plot to 10 and 20 in center and right plots. The mean
free path length for all three plots was 1mm.

Total Reflectance Total Transmittance
Mfp MC Multipole Dipole MC Multipole Dipole

2 51.6% 49.8% 90.2% 49.8% 48.1% 26.5%
10 83.4% 83.8% 90.2% 13.8% 13.8% 3.0%
20 89.0% 89.0% 90.2% 6.0% 5.9% 0.7%

Table 1: Comparison of the total reflectance and transmission pre-
dicted by the dipole and multipole models compared to Monte Carlo
for the plots in Figure 2.

An incident ray of light is converted into an isotropic point source
embedded at depth ` in the slab, and the diffuse reflectance and
transmittance are given by Equations (12) and (13). In practice,
since the contribution of each dipole decreases with distance, the
actual number required in this multipole configuration depends on
the slab thickness and the optical properties of the material.

Figure 2 compares the Monte Carlo traced reflectance and trans-
mittance of thin slabs from 2 to 20 mean free paths to the responses
predicted by the dipole and multipole methods. The dipole trans-
mittance is calculated using the linear distance from the incident
light to exitant location (i.e. assuming the points are on the same
surface). Note that because the dipole does not account for light
that exits the bottom of the slab, it predicts light will continue to
scatter and exit the top of the material. For thicker slabs, the dipole
performs well, but is noticeably divergent for thin slabs. The dipole
also incorrectly predicts both the intensity and shape of the trans-
mittance profiles in all cases. The multipole accurately predicts
both the reflectance and transmittance in all cases. This is also evi-
dent in the total reflectance and transmittance predicted by the two
models (Table 1).

2.2 Refractive index mismatches

The multipole approximation has been used to compute reflectance
and transmittance from slabs in the space and time domains [Con-
tini et al. 1997; Wang 1998], but only when the non-scattering ma-
terials above and below the slab are assumed to have the same index
of refraction. When dealing with multi-layered materials, however,
this is not always the case. Many materials (e.g. skin, plant leaves),
are composed of layers with differing indices of refraction.

Recall that the multipole must satisfy both boundary equations (6)
and (10) simultaneously. When the index of refraction ratios at the
two interfaces of the slab differ, the difference in Fresnel reflectance

generate different conditions at the top and the bottom of the slab

φ(r)−2A(0)D
∂φ(r)

∂ z
= 0, at z = 0, (14)

φ(r)+2A(d)D
∂φ(r)

∂ z
= 0, at z = d, (15)

where A(0) and A(d) (see Equation (7)) are calculated using the
diffuse Fresnel reflectance at the top and bottom interfaces. These
two conditions will give different vanishing points for the fluence.
Satisfying both conditions at once requires adjusting the mirroring
distance of the dipoles about the slab

zr,i = 2i(d + zb(0)+ zb(d))+ `
zv,i = 2i(d + zb(0)+ zb(d))− `−2zb(0), (16)

where each zb is computed using the appropriate A. When the Fres-
nel reflectances are the same, A(0) = A(d), and the formulas in
Equation (16) simplify to those in Equation (11).

2.3 Diffusion in multi-layered materials
Until now, the multipole method has not been applied to multi-
layered materials. Previous work in the medical physics commu-
nity related to light scattering through layered media have focused
on solving boundary conditions at an interface between these scat-
tering layers [Keijzer et al. 1988]. These conditions lead to non-
analytic solutions that have no clear extension to more than two
or three layers. They also do not directly provide the steady-state
reflectance and transmittance profiles that are useful for rendering.

In this section, we present a novel method for approximating the
steady-state reflectance and transmittance profiles of multi-layered
materials by combining the multipole method with Kubelka-Munk
theory.

Given the incident flux Φ(x,y, ~ω) at a surface, we can compute the
radiant emittance profile, M, through the slab at (x,y) by convolving
the incident flux, Φ, with the transmittance profile, T

M(r) =
∫

∞

−∞

∫
∞

−∞

Φ(x′,y′, ~ω)T (r′′)dx′dy′ = Φ(x,y, ~ω)∗T (r), (17)

where r′′ =
√

(x− x′)2 +(y− y′)2.

Both the dipole and multipole methods assume that the emitted light
is diffuse. They also assume that the angle of incidence has no ef-
fect on the reflection or transmission response of a material. This



Figure 3: The convolution technique is robust for a wide range of parameters. Our method is most accurate near the source, where accuracy
is most important. (left) A thick low-scattering top layer covering a highly scattering thinner lower layer. (middle) A thin low-scattering top
layer over a highly scattering thin bottom. (right) A thin highly scattering top layer over a very thick substrate. There is no transmittance
since it is optically thick.

Reflectance Transmittance
Material MC KM no-KM MC KM no-KM

Figure 3 left 85.1% 81.4% 65.6% 1.15% 0.90% 0.42%
Figure 3 middle 94.8% 97.8% 71.5% 3.5% 3.5% 8.4%
Figure 3 right 82.1% 78.0% 67.9% 0.0% 0.0% 0.0%

Table 2: Comparison of the total reflectance and transmission pre-
dicted by the multipole models to Monte Carlo for the materials in
Figure 3, with and without the correction described in Section 2.3.

effectively equates the impulse response of a slab to its diffuse re-
sponse. Note that the multipole gives the impulse response of a
slab.

We can combine the profiles of two different layers by assuming
that all interactions between the two layers are due to multiple scat-
tering. This assumption is reasonably accurate as long as diffusion
theory is applicable to the individual layers — i.e. they have a thick-
ness of at least a few mean free paths. Based on this assumption,
we can compute the profile T12 of the light transmitted through two
slabs with transmittance profiles T1 and T2 by convolving the pro-
files

T12(r) =
∫

∞

−∞

∫
∞

−∞

T1(r′)T2(r′′)dx′dy′ = T1(r)∗T2(r), (18)

where r′ =
√

x′2 + y′2. This equation assumes that light transmitted
through layer 1 onto layer 2 is transmitted through layer 2. This is
not entirely correct, since some of the light may transmit through
layer 1, and later return to layer 1 after scattering in layer 2. This
light can again scatter back to layer 2 and transmit out the bottom
of the slab. To account for these additional scattering events at the
interface we correct Equation (18) by additional terms accounting
for each scattering event:

T12 = T1 ∗T2 +T1 ∗R2 ∗R1 ∗T2 +T1 ∗R2 ∗R1 ∗R2 ∗R1 ∗T2 + . . .
(19)

where we have omitted the dependence on r for brevity. This series
of convolutions can be evaluated efficiently using Fourier theory,
which changes each convolution into a product in frequency space

T12 = T1T2 +T1R2R1T2 +T1R2R1R2R1T2 + . . .

= T1T2(1+R2R1 +(R2R1)
2 +(R2R1)

3 + . . .), (20)

where R and T are Fourier transformed diffuse reflectance and

transmittance profiles. The resulting expression is a geometric se-
ries. Assuming that R1R2 < 1, we can simplify Equation 20 to

T12 =
T1T2

1−R2R1
. (21)

A similar analysis to above produces a similar formula for the re-
flectance of two layers

R12 = R1 +
T1R2T1

1−R2R1
. (22)

This method can be extended to more than two layers by recur-
sive substitution of Equations (21) and (22) in for R1 or T1, and
re-evaluating the formulas. The real-space reflectance and transmit-
tance profiles of a many-layered material is computed by computing
the inverse Fourier transform of the total frequency response.

Note that these formulas are identical to Kubelka’s [1954], but ap-
plied in frequency space. They can also be considered as an ap-
plication of the multipole approximation as a scattering function in
operator form [Pharr and Hanrahan 2000].

Figure 3 compares the convolution of the responses of two-layered
materials, and a comparison to Monte Carlo photon tracing. The
convolution of the two layers closely approximates the reflectance
and transmittance profiles near the source, and though it can di-
verge slightly far from the source, the intensity levels are not sig-
nificant. Table 2 shows the effect of frequency space correction.
Note that with correction, the total reflectance and transmittance
profiles more closely matches the Monte Carlo simulations.

2.4 Rough surfaces
Our derivation so far has assumed that the top surface of the mate-
rial is smooth. We can account for rough surfaces by modifying the
boundary condition that states how the diffused light is reflected at
the surface. This can be done by replacing the Fresnel term in Equa-
tion (5) by an appropriate BRDF. In the following, we will assume
that a microfacet model can be used to describe the roughness of
the surface, and we model the surface reflection using a Torrance-
Sparrow BRDF [Torrance and Sparrow 1967]

fr(x, ~ωo, ~ωi) =
D(x, ~ωo, ~ωi)G(x, ~ωo, ~ωi)F(x, ~ωi, ~ωo)

4(~ωi ·~n)(~ωo ·~n)
, (23)



where~n is the surface normal, and D, G, and F are the facet distri-
bution, geometric term, and the Fresnel term (see [Glassner 1995]
for details). In the case of a smooth surface the diffuse Fresnel term,
Fdr, given in Equation (8) specifies the fraction of diffuse light re-
flected at the surface. In the case of a rough surface we replace this
term by an average diffuse reflection, ρd . For the Torrance-Sparrow
model there is no analytic approximation of the diffuse reflection,
and we compute it using Monte Carlo sampling by evaluating the
BRDF for random diffuse incident directions and averaging the re-
sulting value for the reflection (this is done once for a given mate-
rial).

Once the diffuse reflection factor, ρd , is computed we can modify
the A term (Equation 7) used in the computation of the extrapolation
distance as follows:

A =
1+ρd

1−ρd
. (24)

In addition, Equation (2) is changed by replacing both Fresnel terms
with a diffuse transmission function

Sd(xi, ~ωi;xo, ~ωo) =
1
π

ρdt(xi, ~ωi)R(||xi − xo||)ρdt(xo, ~ωo), (25)

where

ρdt(x, ~ωo) = 1.0−
∫

2π

fr(x, ~ωo, ~ωi)(~ωi ·~n)d~ωi. (26)

We assume all light that is not reflected by the BRDF model is
transmitted into the material. Since ρdt is a fairly smooth func-
tion, we use numerical integration and generate a small table for
different incoming angles. The use of ρdt is an approximation, as
the transmitted light has a directional distribution described by a
BRDF for transmitted light [Stam 2001]. Since we use a diffusion
model, however, this distribution can be ignored, and we consider
all transmitted light to be diffuse.

The final model for the appearance of a rough translucent material
consists of the diffusion model plus the BRDF for the reflection of
light by the rough surface. As the surface roughness increases this
model predicts that less light will be transmitted into the material,
while more light is reflected directly by the surface. This results in
a desaturation of the color of the translucent material as the impor-
tance of the (often white) surface reflection grows.

3 Rendering with the Multi-Layer Model

The multi-layered diffusion model is computed by evaluating the
multipole for each layer, and using the Fourier transform technique
described in the previous section to obtain the total diffuse transmit-
tance and reflectance of the material. Because no analytical trans-
form of the multipole equation exists, we use the discrete Fourier
transform to generate tabulated reflectance and transmittance pro-
files. Discretely sampling the profiles is computational efficient
compared to re-evaluating the multipole for every pixel. This is
particularly beneficial when capturing the properties of highly scat-
tering extremely thin layers, where a large number of dipole pairs
may be required. For thicker, less scattering single slabs, the ana-
lytic multipole model can be used directly. Both the analytic mul-
tipole and the tabulated profiles can be rendered using the same
techniques as the dipole method.

The multi-layer model provides both a reflectance and a transmit-
tance profile, but the geometry to be rendered determines how they
should be used. As with the dipole model these profiles are only
valid for planar slabs, and can only be used as approximations for
other types of geometry. When modeling a multi-layered material
such as skin it is sufficient in most cases to use only the reflectance
profile to model the diffusion of light. In the case of complex thin

(a few mean-free paths) geometry it is possible to blend the reflec-
tion and transmission profiles, depending on the normals ~nl and ~ns
at the location of the incident light and the point being shaded

Pd(r) = 1
2 (~ns ·~nl +1)Rd(r)+ 1

2 (1−~ns ·~nl)Td(r) . (27)

This equation computes a new profile as the weighted average of the
reflected and transmitted profiles. Note that only the reflected pro-
file is used if the normals point in the same direction, while only the
transmitted profile is used if they point in opposite directions. One
potential improvement to this formula would be to take into account
the relative position of the two points as well (e.g. if the normals are
facing each other). However, since the geometry between the point
being shaded and the point being illuminated is unknown, there is
no guarantee of accuracy. For applications that require high degrees
of precision for small complex geometry, it is better to use Monte
Carlo photon tracing or a multi-grid diffusion solver.

3.1 Texturing
Texturing a multi-layered translucent material can be done in a
number of ways. If the texture contains information about the scat-
tering properties of each layer then it is possible to approximate the
spatially varying reflectance and transmittance profiles by convolv-
ing the spatially varying reflectance and/or transmittance profiles
for the individual layers (assuming that the surface is locally homo-
geneous). This process is costly as it has to be done for every point
on the surface or for every texture element.

A simpler technique that works well in practice is to assume that the
texture is given as an albedo map (e.g. diffuse reflectance) similar
to textures used to shade opaque materials. This approach has been
used on translucent materials based on the dipole model [Jensen and
Buhler 2002; Hery 2003]. If we further assume that only nearby
texture values influence each other then we can account for textur-
ing using the following approach.

• First, we convolve the texture with the reflectance profile (and
the transmittance profile if thin geometry is being shaded).
This effectively blurs the texture according to the diffusion of
light (a similar approach has been used on the irradiance value
by Borshukov et al. [2003]).

• Next, we normalize the texture such that the average is a white
color. This is done to ensure that the color of the diffusion
process is used, rather than the texture color. If the texture
color is important then the texture can be normalized by the
reflectance and/or transmittance value predicted by the multi-
pole method (we have not used this approach).

• Finally, during rendering we compute the effective diffusion
of light using the reflectance and/or transmittance profile, and
scale the predicted radiant emittance by the normalized tex-
ture value.

4 Results and Discussion
We have implemented the multi-layered diffusion model in a Monte
Carlo ray tracer that supports direct sampling of scattering profiles
as described in [Jensen et al. 2001]. The images were rendered on
a 2.8GHz Pentium IV, and the rendering times for the individual
images were from one to five minutes. Preprocessing time to gen-
erate the scattering profiles ranged from five seconds to under one
second, using 1000 dipole pairs to ensure accuracy.

Figure 4 compares the accuracy of the multipole method with the
dipole method and Monte Carlo photon tracing. The scene contains
a thin piece of parchment illuminated from behind. The parchment
is roughly 1 mm. thick, which corresponds to approximately four
mean free paths. The dipole predicts a transmittance of about 3.3%
compared with 22.6% for the multipole and 21.5% for the Monte



Dipole model Multipole model Monte Carlo reference

Figure 4: A piece of parchment illuminated from behind. Note,
how the dipole model (left) underestimates the amount of transmit-
ted light, while the multipole model (middle) matches the reference
image computed using Monte Carlo photon tracing (right).

Jade Jade + paint
Figure 5: A buddha statuette sprayed with a thin layer of white
paint. The first and third images are front-lit, the second and fourth
back-lit.

Carlo reference result. As a consequence, the parchment is too dark
when rendered with the dipole diffusion model, while the multipole
model more precisely predicts the correct appearance.

Figure 5 shows the effect of adding a thin layer of paint onto a
thicker buddha statue made of jade. The paint is highly scattering
of white light, while the jade absorbs most non-green light. Adding
the paint layer causes the reflected light to become more white, and
attenuates the amount of light that reaches the jade, causing the
statue to look more opaque. The transmitted light, however, re-
mains green as it still scatters through the jade material.

Figure 7 demonstrates several renderings of a marble statue with
different surface roughness values. As the surface roughness in-
creases, the surface changes from having an oily appearance to
looking more dry and rough. Another important change is the de-
saturation of the color of the statue due to an increase in the amount
of reflected light, and a reduction in the amount of lighting due to
subsurface scattering.

Figure 6 displays renderings of a leaf composed of a thick absorb-
ing layer over a thin highly scattering layer, similar to [Hemenger
1977], with absorption parameters taken from [Fukshansky et al.
1993]. Note that while the orientation of the leaf affects the re-
flectance, the transmittance is nearly the same. This bicoloration is
an important visual element of many leaves. For the leaf model, we
applied both thickness and bump maps on the geometry to simulate
the appearance of the leaf veins. The thickness map is effectively
used as a displacement map, which increases the distance of the
diffused lighting. This gives the effect of thickness, but it is only an
approximation as the overall reflectance profile changes as a func-
tion of the thickness of each layer. The leaf color is caused by
multiple scattering; no textures have been used.

Multiple layered models have been shown to be effective in simu-
lating the optical properties of human skin [Tuchin 2000]. In Fig-
ure 8 we demonstrate a three layer model of human skin applied to
a high-resolution digital scan of a head. No bump map was used;

Front and back, frontlit. Front and back, backlit.
Figure 6: A layered leaf lit from front and behind. The reflectance
of the front and back sides of the leaf differ significantly, while the
transmittance is nearly identical. Note that the color is due to mul-
tiple scattering; no textures are applied.

σa (mm−1) σs (mm−1)
R G B R G B η g d (mm)

epidermis 2.1 2.1 5.0 48.0 60.0 65.0 1.4 0.0 .03
upper dermis 0.16 0.19 0.30 32.0 40.0 46.0 1.34 0.25 .05

bloody dermis 0.085 1.0 25.0 4.5 4.7 4.8 1.4 0.8 ∞

Table 3: Optical parameters used in generating the images in Fig-
ure 8. η is the index of refraction, and d is the thickness of the layer.

the surface detail is due to the actual geometry of the model. The
parameters for each layer are from Tuchin [2000] and summarized
in Table 3. The top images show the contribution each layer gives to
the overall appearance, as well as the contribution of surface rough-
ness at the top surface of the skin. The lower images add texturing
as described in the previous section. Note that although the individ-
ual layers may not appear to be skin-like, this is often the case of
actual photographs of the bloodless top layers of human skin. Also,
it is the overall reflectance from the convolution of these layers that
gives the final appearance. The bloody dermis layer is assumed to
be semi-infinite, which is often done to simulate the effects of in-
ternal tissues, while the highly scattering upper layers determine
the softness and tint of the skin. Figure 8 shows a comparison be-
tween the multilayer model and the dipole model using the param-
eters provided in [Jensen et al. 2001]. The dipole overestimates the
amount of scattering, giving the face a waxy, translucent look that
blurs the features of the skin. The multi-layered model results in
a less blurry appearance due to the improved approximation of the
highly scattering epidermal and dermal layers compared with the
bloody dermis. The overall appearance of the skin is still translu-
cent as can be seen when the light is bleeding into shadowed re-
gions, or when the skin is illuminated from behind (e.g. at the ear).

Note that parameters to the dipole model cannot always be used in
the multipole model directly, as the dipole parameters are designed
to capture the overall appearance of a semi-infinite sample of the
material. Instead, the images in Figure 8 have been rendered using
parameters from existing work in tissue optics. These parameters
are more intuitive than the parameters in the dipole model, since
the specific properties of each layer can be modified (e.g. blood
concentration or melanin) to change the overall appearance.

5 Conclusions and Future Work

We have presented an efficient method for accurately rendering thin
and multi-layered translucent materials based on a multipole diffu-
sion approximation. The multipole theory is enhanced to account
for mismatched indices of refraction as well as rough surfaces. Us-
ing a novel application of Kubelka-Munk theory in frequency space
a new method for combining multiple layers of translucent mate-
rials has been introduced. The new model is efficient and accu-
rate, and it renders thin and layered materials such as paper and
skin faithfully. In the future we would like to extend the diffusion
theory to objects with internal structures and to investigate if the
multi-layer model can be used to make accurate measurements of
subsurface scattering in layered translucent materials.



Figure 7: A translucent marble statue with surface roughness 0.1 on the left, 0.5 in the middle, and 1.0 on the right. The smaller images show
the subsurface scattering component and the roughness component of the smooth (0.1) and the rough (1.0) translucent statues. Note how
the smooth version is more shiny and brighter due to a higher subsurface scattering component. As the surface gets more rough the surface
reflection increases, which reduces the amount of subsurface scattering, and the overall result is a desaturation of the color of the marble
material.
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Dipole close-up using parameters
from [Jensen et al. 2001]

Multi-layer close-up using
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Backlit close-up of the left ear
Figure 8: A multi-layered model of human skin using measured parameters for the individual skin layers [Tuchin 2000]. The top images show
the reflectance and transmittance of the epidermis, upper dermis, and the bloody dermis layers. The far right image shows the combination
of these layers using the multi-layer model. The middle images on the right compares the dipole model using the parameters from [Jensen
et al. 2001] with the multi-layer model. Note how the combination of the different layers results in skin that captures both the translucency of
the bloody dermis as well as the localized scattering in the epidermis. The lower right image shows light scattering through the backlit ear.


